
Enhanced Cobweb Clustering for Identifying Analog

Galaxies in Astrophysics

Ashwin Satyanarayana

N-913, Dept. of Computer Systems Technology

300 Jay Street,

Brooklyn, New York - 11201

asatyanarayana@citytech.cuny.edu

Viviana Acquaviva

N-828, Dept. of Physics

300 Jay Street,

Brooklyn, New York - 11201

vacquaviva@citytech.cuny.edu

Abstract—Clustering, a very popular task in Data Mining, is

unsupervised classification of patterns (observations, data items,

or feature vectors) into groups (clusters). Clustering has been

explored in many different contexts and disciplines. In this

paper, we explore using the COBWEB clustering algorithm to

identify and group together galaxies whose spectral energy

distribution (SED) is similar. We show that using COBWEB

drastically reduces CPU time, compared to a systematic one-by-

one comparison previously used in astrophysics. We then extend

this approach by using COBWEB clustering with Bootstrap

Averaging and show that using Bootstrap Averaging produces a

more accurate model in roughly the same amount of time as

COBWEB.

I. SED FITTING OF LARGE GALAXY CATALOGS

Understanding the physical properties of galaxies, such as
mass, star formation history, age, and dust content, is a key
endeavor in Astrophysics. From the very first galaxies whose
light comes from over 13 billion years ago to today’s rich
landscape of shapes, star formation histories and compositions,
galaxies help us trace 95% of the universe’s evolution. The
Spectral Energy Distribution (SED) of a galaxy is a chart of the
galaxy’s luminosity as a function of wavelength, and it
contains information about the physical properties of the
galaxy, such as mass, age of the stellar population, star
formation history, and dust content. The process of extracting
information from the SED (known as SED fitting, see e.g.,
Acquaviva et al [1][2]) is a key step in understanding galaxy
formation and evolution. Large ongoing and planned galaxy
surveys offer us the opportunity of recovering these properties
for an unprecedented number of galaxies (of the order of
billions for the Large Synoptic Survey Telescope, or LSST
[3]), but this chance comes with a hefty tag in terms of CPU
time if every galaxy has to be analyzed individually. However,
for each of the surveys, the information contained in the
spectrum is compressed and “binned” in a handful of data
points. Therefore, in large data sets there will be many galaxies
whose SED have the same shape within the observational
errors. If these galaxies can be grouped together before
performing SED fitting, this affords a factor of ∼ N
improvement in CPU time, where N is the average number of
galaxies in each group.

We demonstrate that groups of similar galaxies or “data
clusters” exist even in relatively small samples of galaxies by

analyzing a sample of 5228 galaxies in the CANDELS
GOODS-S catalog [4]. These data were taken by the Hubble
Space Telescope in a three-year campaign between 2010 and
2013, and represent one of the best quality, highest signal-to-
noise galaxy catalog available today. The dataset has 9
features. The only method mentioned in Astrophysics literature
so far for identifying analog galaxies [5] is what we call a “grid
search algorithm”. In this method, the SED of every galaxy is
compared to the SED of every other galaxy in order to find
which galaxy has the most “analogs”. This group of galaxies is
then removed from the list and the process is repeated in order
to find the next largest group of analogs, until no more analogs
are found. We applied this method to the catalog described
above, and found that:

- The average number of analogs for each galaxy is

13.5, i.e., many galaxies have analogs;

- Even the “first pass” of the classification tool about 30
minutes on a 2.2Ghz MacBook Pro computer, and a
conservative estimate for completing the classification
using this O(N

2
) approach is about 20-50 hours.

These results imply that while finding groups of analog
galaxies is a promising avenue for reducing the CPU time
required by SED fitting, it is necessary to explore different
numerical tools in order to speed up the clustering process. The

goal of this paper is to use, for the first time, data mining
tools to identify clusters of galaxies efficiently and rapidly.

The format of the paper is as follows: In the next section
we briefly present clustering algorithms and present the
COBWEB algorithm. We then discuss our enhanced approach
where we use Bootstrap Averaging on COBWEB. We finally
show how this algorithm is able to reduce the CPU time used
for the classification without sacrificing accuracy.

II. CLUSTERING AND THE COBWEB ALGORITHM

Clustering algorithms have been used in a variety of

applications such as cancer research [6], search engines [7],
academics [8] and wireless sensor networks [9]. In this paper
we focus on using conceptual clustering in the field of
astrophysics. Conceptual clustering is normally used in order to
discover classes of objects with common characteristics in

large amounts of data. A system employed in this task receives
as input a set of observations and outputs a set of classes in
which the input is distributed. The observations are described
by a predefined set of attributes that take a value from a given
set of values. The attributes are chosen such that to represent
the observation’s characteristics and assist in this way in
forming a meaningful clustering scheme. Conceptual clustering
systems evaluate these properties using an appropriate
objective function and attempt to improve the quality of the
clustering by employing a control strategy. In particular, we
choose hierarchical conceptual clustering for finding analog
galaxies as we do not have to assume any particular number of
clusters beforehand. The core idea in hierarchical conceptual
clustering, also known as cconnectivity based clustering, is that
objects are more related to those near them. These algorithms
connect “objects” to form “clusters” based on their distance.

A. Cobweb Algorithm

The COBWEB algorithm [10], an incremental conceptual
hierarchical clustering technique, was developed by machine
learning researchers in the 1980s for clustering objects in a
object-attribute data set. The COBWEB algorithm yields a
clustering dendrogram called classification tree that
characterizes each cluster with a probabilistic description. The
COBWEB algorithm constructs a classification tree
incrementally by inserting the objects into the classification
tree one by one. When inserting an object into the classification
tree, the COBWEB algorithm traverses the tree top-down
starting from the root node. At each node, the COBWEB
algorithm considers 4 possible operations (insert, create,
merge, split) and selects one that yields the highest category
utility (CU) function. CU attempts to maximize both the
probability that two instances in the same category have
attribute values in common and the probability that instances
from different categories have different attribute values:

 ∑ ∑ ∑ () (|) (|) (1)

P(A = v|C) is the probability that an instance has value v
for its attribute A, given that it belongs to category C. The
higher this probability, the more likely two instances in a
category share the same attribute values. P(C|A=v) is the
probability that an instance belongs to category C, given that it
has value v for its attribute A. The greater this probability, the
less likely instances from different categories will have
attribute values in common. P(A=v) is a weight, assuring that
frequently occurring attribute values will have stronger
influence on the evaluation.

After applying Bayes rule to (1) we get:

 ∑ ∑ ∑ () (|) (2)

∑ ∑ (|) is the expected number of attribute
values that one can correctly guess for an arbitrary member of
class C. This expectation assumes that a probability matching
strategy, in which one guesses an attribute value with a
probability equal to its probability of occurring. Without
knowing the cluster structure the above term is ∑ ∑ (

)

The final CU is defined as the increase in the expected
number of attribute values that can be correctly guessed, given

a set of n categories, over the expected number of correct
guesses without such knowledge. That is:

∑ ()∑ ∑ [(|) ()] (3)

The above expression is divided by n to allow comparing
different sized clusters. The steps of the COBWEB algorithm
are shown in Fig. 1.

Fig 1. COBWEB Algorithm

We now discuss some of pros and cons of using COBWEB
algorithm for our application of identifying analogs of galaxies.

Pros:

a. Better Time Complexity: COBWEB has the time
complexity of O(AVB

2
logK), where B is branching

factor, A (attributes), V (average number of values), K
(classes). Empirically B is chosen between 2 and 5. In
comparison, the Grid Search method uses O(N

2
) time

complexity.

b. Number of clusters not known beforehand: In our
specific application of identifying groups of analog
galaxies, we do not know beforehand the number of
clusters needed, which is ideal for Hierarchical
clustering techniques like COBWEB.

Cons:

a. Does not handle noisy data: COBWEB algorithm does
not deal well with noisy data as hierarchical clustering
algorithms find it difficult to detect outliers.

b. Tends to make “bushy” trees: The higher levels of the
tree end up being the most important class categories
(because of merge/split causing best breaks to float
up).

 In order to overcome these cons, we propose using
bootstrap averaging, which will eliminate noisy data and create
more accurate models. This will be shown in the empirical
section of this paper.

B. Cobweb Algorithm with Bootstrap Averaging

Bootstrap Averaging [11] is an ensemble technique that
produces replicates of the training dataset by sampling with
replacement from the original dataset. This creates bootstrap
samples of equal size to the original dataset. Then a model is
built on each replicate. Together these models form an
ensemble model. The cluster centroids from each of the models
are averaged. This approach reduces the variance and also
eliminates noisy instances as will be shown later in this paper.

Our prior work [11] showed that Bootstrap (sampling with
replacement) Averaging works well with k-means clustering
algorithm. In our current work, we show that Bootstrap
algorithm works not only with partitioning algorithms (i.e. k-
means) but also with hierarchical algorithms (like COBWEB).
Our approach basically consists of 3 steps: (a) sub-sampling
the training data (b) cluster each sub-sample using COBWEB
and (c) cluster the resulting cluster centers to generate a refined
final model.

Our approach builds multiple models by creating small
bootstrap samples of the training set and building a model from
each, but rather than aggregating like bagging [12], we average
similar cluster centers to produce a single model. In this paper
we shall focus on bootstrap samples that are smaller than the
training data size. This produces results that are comparable
with multiple random restarting of COBWEB clustering using
all of the training data, but takes far less computation time. For
example, when we take T bootstrap samples of size 25% of the
training data set then the technique takes at least four times less
computation time but yields as good as results if we had
randomly restarted COBWEB T times using all of the training
data. The Bootstrap Averaging algorithm is shown in Fig 2.

Fig 2. COBWEB with Bootstrap Averaging

III. RESULTS

 We tested the performance of the Hierarchical Clustering

(HC) algorithm compared to the Grid Search (GS) method on

an out-of-the-box distribution of the COBWEB algorithm

(Fisher 1987). The algorithm took about 5 seconds to

complete the classification scheme, dividing the sample in 742

clusters. Both algorithms (GS and HC) performed similarly

well in identifying analog galaxies, but the HC algorithm is

about 20,000 times faster. This gap will increase rapidly for

bigger samples, since the CPU time required by the HC

algorithm scales with sample size much slower than N
2

(between O(N) and O(N log N); the latter is the “worst case”

in which a sample twice as large requires twice as many

fundamental shapes).

Figs 3-5: Example of clusters found by the grid-seacrh algorithm (top),
COBWEB (middle), and COBWEB with Bootstrap Averaging (bottom).
In each of these plots, the x axis shows the wavelength of the observations
in Angstroms, while the y axis shows the brightness of the galaxy at each
wavelength.

Our first improvement over the public version of

COBWEB was to minimize the number of noisy instances

(outliers) by using Bootstrap Averaging. This improvement

eliminates noisy instances and allows one to build a more

powerful classification, with 505 final clusters and ~ 10

members per cluster, at only a 10% cost in terms of CPU time.

The performance of the three algorithms is summarized in the

table, and two example clusters for grid search and HC (before

and after Bootstrap Averaging) are shown in Figs. 3-5. Each

figure shows the SEDs of galaxies found to belong to the same

cluster. Our results imply that the time required for SED

fitting time of these 5228 galaxies could be reduced by a

factor 5228/505 ~ 10 by using this powerful classification

algorithm. In a survey like LSST, with billions of SEDs with

only 6 features, the number of analog galaxies in each group

will be much larger and so will be the improvement in CPU

time.

Table 1: Comparing 3 algorithms for Clustering galaxies

CONCLUSION

In this paper we have shown that using data mining tasks
such as clustering can be very effective in the field of
astrophysics, where there is a big data revolution. We came to
the empirical conclusion that hierarchical clustering is a
suitable tool for identifying groups of similar galaxies quickly
and efficiently. However, we found that noisy instances still
existed in the clusters. We then resolved this problem by using
bootstrap averaging with hierarchical clustering to fix this
problem. Further steps would be to inverse-noise weigh the
different features to insure that the experimental uncertainties
are correctly taken into account in the classification process.

REFERENCES

[1] V. Acquaviva, E. Gawiser, and L. Guaita, “SED fitting with Markov
Chain Monte Carlo: methodology and application to LAE galaxies”,
Astrophys. J. 737: 37 (2011).

[2] V. Acquaviva, E. Gawiser ,and L. Guaita, “SED fitting: methodology
and application to large galaxy surveys” ,Proceedings of the IAU
symposium ”The SED of galaxies”, Preston, UK (2011).

[3] Z. Ivezic et al, “LSST: from Science Drivers to Reference Design and
Anticipated Data Products”, arXiv:0805.2366 (200*).

[4] Y. Guo et al, “CANDELS Multi-wavelength Catalogs: Source Detection
and Photometry in the GOODS-South Field” Astrophys. J., Suppl. Ser.,
207, 24 (2013).

[5] Kriek, M., van Dokkum, P. G., Whitaker, K. E., Labbe, I., Franx, M., &
Brammer, G. B. 2011, Astrophys. J., 743, 168.

[6] Wang, X. Y., and J. M. Garibaldi. "A comparison of fuzzy and non-
fuzzy clustering techniques in cancer diagnosis." Proceedings of second
international conference in Computational Intelligence in Medicine and
Healthcare. 2005.

[7] Liu, Ting, Charles Rosenberg, and Henry A. Rowley. "Clustering
billions of images with large scale nearest neighbor search."
Applications of Computer Vision, 2007. WACV'07. IEEE Workshop on.
IEEE, 2007.

[8] Oyelade, O. J., O. O. Oladipupo, and I. C. Obagbuwa. "Application of k
means clustering algorithm for prediction of students academic
performance." arXiv preprint arXiv:1002.2425 (2010).

[9] Akkaya, Kemal, Fatih Senel, and Brian McLaughlan. "Clustering of
wireless sensor and actor networks based on sensor distribution and
connectivity." Journal of Parallel and Distributed Computing 69.6
(2009): 573-587.

[10] Fisher, Douglas H. (July 1987). "Improving inference through
conceptual clustering". Proceedings of the 1987 AAAI Conferences.
AAAI Conference. Seattle Washington. pp. 461–465.

[11] I Davidson, A Satyanarayana: Speeding up k-means clustering by
Bootstrap Averaging. IEEE Data Mining Workshop on Clustering Large
Data Sets, Third IEEE International Conference on Data Mining

[12] L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140,
1996.

Algorithm CPU
Time

Number of
clusters

Number of analog
galaxies per Cluster

Grid Search 20-50
hours

387 13.5

Cobweb 4.87
seconds

742 7.04

Cobweb with
Bootstrap averaging

5.24
seconds

505 10.35

