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Abstract—Clustering, a very popular task in Data Mining, is 

unsupervised classification of patterns (observations, data items, 

or feature vectors) into groups (clusters). Clustering has been 

explored in many different contexts and disciplines. In this 

paper, we explore using the COBWEB clustering algorithm to 

identify and group together galaxies whose spectral energy 

distribution (SED) is similar. We show that using COBWEB 

drastically reduces CPU time, compared to a systematic one-by-

one comparison previously used in astrophysics. We then extend 

this approach by using COBWEB clustering with Bootstrap 

Averaging and show that using Bootstrap Averaging produces a 

more accurate model in roughly the same amount of time as 

COBWEB.  

 

I.  SED FITTING OF LARGE GALAXY CATALOGS 

Understanding the physical properties of galaxies, such as 
mass, star formation history, age, and dust content, is a key 
endeavor in Astrophysics. From the very first galaxies whose 
light comes from over 13 billion years ago to today’s rich 
landscape of shapes, star formation histories and compositions, 
galaxies help us trace 95% of the universe’s evolution. The 
Spectral Energy Distribution (SED) of a galaxy is a chart of the 
galaxy’s luminosity as a function of wavelength, and it 
contains information about the physical properties of the 
galaxy, such as mass, age of the stellar population, star 
formation history, and dust content. The process of extracting 
information from the SED (known as SED fitting, see e.g., 
Acquaviva et al [1][2]) is a key step in understanding galaxy 
formation and evolution. Large ongoing and planned galaxy 
surveys offer us the opportunity of recovering these properties 
for an unprecedented number of galaxies (of the order of 
billions for the Large Synoptic Survey Telescope, or LSST 
[3]), but this chance comes with a hefty tag in terms of CPU 
time if every galaxy has to be analyzed individually. However, 
for each of the surveys, the information contained in the 
spectrum is compressed and “binned” in a handful of data 
points. Therefore, in large data sets there will be many galaxies 
whose SED have the same shape within the observational 
errors. If these galaxies can be grouped together before 
performing SED fitting, this affords a factor of ∼ N 
improvement in CPU time, where N is the average number of 
galaxies in each group. 

We demonstrate that groups of similar galaxies or “data 
clusters” exist even in relatively small samples of galaxies by 

analyzing a sample of 5228 galaxies in the CANDELS 
GOODS-S catalog [4]. These data were taken by the Hubble 
Space Telescope in a three-year campaign between 2010 and 
2013, and represent one of the best quality, highest signal-to-
noise galaxy catalog available today. The dataset has 9 
features. The only method mentioned in Astrophysics literature 
so far for identifying analog galaxies [5] is what we call a “grid 
search algorithm”. In this method, the SED of every galaxy is 
compared to the SED of every other galaxy in order to find 
which galaxy has the most “analogs”. This group of galaxies is 
then removed from the list and the process is repeated in order 
to find the next largest group of analogs, until no more analogs 
are found. We applied this method to the catalog described 
above, and found that: 

 
- The average number of analogs for each galaxy is 

13.5, i.e., many galaxies have analogs; 
 

- Even the “first pass” of the classification tool about 30 
minutes on a 2.2Ghz MacBook Pro computer, and a 
conservative estimate for completing the classification 
using this O(N

2
) approach  is about 20-50 hours. 

 
These results imply that while finding groups of analog 
galaxies is a promising avenue for reducing the CPU time 
required by SED fitting, it is necessary to explore different 
numerical tools in order to speed up the clustering process. The 

goal of this paper is to use, for the first time, data mining 
tools to identify clusters of galaxies efficiently and rapidly.  

The format of the paper is as follows: In the next section 
we briefly present clustering algorithms and present the 
COBWEB algorithm. We then discuss our enhanced approach 
where we use Bootstrap Averaging on COBWEB. We finally 
show how this algorithm is able to reduce the CPU time used 
for the classification without sacrificing accuracy. 

 

II. CLUSTERING AND THE COBWEB ALGORITHM 

 
Clustering algorithms have been used in a variety of 

applications such as cancer research [6], search engines [7], 
academics [8] and wireless sensor networks [9]. In this paper 
we focus on using conceptual clustering in the field of 
astrophysics. Conceptual clustering is normally used in order to 
discover classes of objects with common characteristics in 



large amounts of data. A system employed in this task receives 
as input a set of observations and outputs a set of classes in 
which the input is distributed. The observations are described 
by a predefined set of attributes that take a value from a given 
set of values. The attributes are chosen such that to represent 
the observation’s characteristics and assist in this way in 
forming a meaningful clustering scheme. Conceptual clustering 
systems  evaluate these properties using an appropriate 
objective function and attempt to improve the quality of the 
clustering by employing a control strategy. In particular, we 
choose hierarchical conceptual clustering for finding analog 
galaxies as we do not have to assume any particular number of 
clusters beforehand. The core idea in hierarchical conceptual 
clustering, also known as cconnectivity based clustering, is that 
objects are more related to those near them. These algorithms 
connect “objects” to form “clusters” based on their distance. 

A. Cobweb Algorithm 

The COBWEB algorithm [10], an incremental conceptual 
hierarchical clustering technique, was developed by machine 
learning researchers in the 1980s for clustering objects in a 
object-attribute data set. The COBWEB algorithm yields a 
clustering dendrogram called classification tree that 
characterizes each cluster with a probabilistic description. The 
COBWEB algorithm constructs a classification tree 
incrementally by inserting the objects into the classification 
tree one by one. When inserting an object into the classification 
tree, the COBWEB algorithm traverses the tree top-down 
starting from the root node. At each node, the COBWEB 
algorithm considers 4 possible operations (insert, create, 
merge, split) and selects one that yields the highest category 
utility (CU) function. CU attempts to maximize both the 
probability that two instances in the same category have 
attribute values in common and the probability that instances 
from different categories have different attribute values: 

    ∑ ∑ ∑  (   ) (   | ) ( |      )       (1) 

P(A = v|C) is the probability that an instance has value v 
for its attribute A, given that it belongs to category C. The 
higher this probability, the more likely two instances in a 
category share the same attribute values. P(C|A=v) is the 
probability that an instance belongs to category C, given that it 
has value v for its attribute A. The greater this probability, the 
less likely instances from different categories will have 
attribute values in common. P(A=v) is a weight, assuring that 
frequently occurring attribute values will have stronger 
influence on the evaluation. 

After applying Bayes rule to (1) we get: 

                          ∑ ∑ ∑  ( ) (   | )                 (2) 

∑ ∑  (   | )    is the expected number of attribute 
values that one can correctly guess for an arbitrary member of 
class C. This expectation assumes that a probability matching 
strategy, in which one guesses an attribute value with a 
probability equal to its probability of occurring. Without 
knowing the cluster structure the above term is ∑ ∑  (    

 )  

The final CU is defined as the increase in the expected 
number of attribute values that can be correctly guessed, given 

a set of n categories, over the expected number of correct 
guesses without such knowledge. That is: 

    
 

 
∑  ( )∑ ∑ [ (   | )   (   ) ]     (3) 

The above expression is divided by n to allow comparing 
different sized clusters. The steps of the COBWEB algorithm 
are shown in Fig. 1. 

 

Fig 1. COBWEB Algorithm 

We now discuss some of pros and cons of using COBWEB 
algorithm for our application of identifying analogs of galaxies. 

Pros: 

a. Better Time Complexity: COBWEB has the time 
complexity of O(AVB

2
logK), where B is branching 

factor, A (attributes), V (average number of values), K 
(classes). Empirically B is chosen between 2 and 5. In 
comparison, the Grid Search method uses O(N

2
) time 

complexity.  

b. Number of clusters not known beforehand: In our 
specific application of identifying groups of analog 
galaxies, we do not know beforehand the number of 
clusters needed, which is ideal for Hierarchical 
clustering techniques like COBWEB. 

Cons:  

a. Does not handle noisy data: COBWEB algorithm does 
not deal well with noisy data as hierarchical clustering 
algorithms find it difficult to detect outliers.  

b. Tends to make “bushy” trees: The higher levels of the 
tree end up being the most important class categories 
(because of merge/split causing best breaks to float 
up).  

 In order to overcome these cons, we propose using 
bootstrap averaging, which will eliminate noisy data and create 
more accurate models. This will be shown in the empirical 
section of this paper.   

B. Cobweb Algorithm with Bootstrap Averaging 

Bootstrap Averaging [11] is an ensemble technique that 
produces replicates of the training dataset by sampling with 
replacement from the original dataset. This creates bootstrap 
samples of equal size to the original dataset. Then a model is 
built on each replicate. Together these models form an 
ensemble model. The cluster centroids from each of the models 
are averaged. This approach reduces the variance and also 
eliminates noisy instances as will be shown later in this paper. 



Our prior work [11] showed that Bootstrap (sampling with 
replacement) Averaging works well with k-means clustering 
algorithm. In our current work, we show that Bootstrap 
algorithm works not only with partitioning algorithms (i.e. k-
means) but also with hierarchical algorithms (like COBWEB). 
Our approach basically consists of 3 steps: (a) sub-sampling 
the training data (b) cluster each sub-sample using COBWEB 
and (c) cluster the resulting cluster centers to generate a refined 
final model. 

Our approach builds multiple models by creating small 
bootstrap samples of the training set and building a model from 
each, but rather than aggregating like bagging [12], we average 
similar cluster centers to produce a single model. In this paper 
we shall focus on bootstrap samples that are smaller than the 
training data size. This produces results that are comparable 
with multiple random restarting of COBWEB clustering using 
all of the training data, but takes far less computation time. For 
example, when we take T bootstrap samples of size 25% of the 
training data set then the technique takes at least four times less 
computation time but yields as good as results if we had 
randomly restarted COBWEB T times using all of the training 
data. The Bootstrap Averaging algorithm is shown in Fig 2. 

 

 

Fig 2. COBWEB with Bootstrap Averaging 

 

III. RESULTS 

    We tested the performance of the Hierarchical Clustering 

(HC) algorithm compared to the Grid Search (GS) method on 

an out-of-the-box distribution of the COBWEB algorithm 

(Fisher 1987). The algorithm took about 5 seconds to 

complete the classification scheme, dividing the sample in 742 

clusters. Both algorithms (GS and HC) performed similarly 

well in identifying analog galaxies, but the HC algorithm is 

about 20,000 times faster. This gap will increase rapidly for 

bigger samples, since the CPU time required by the HC 

algorithm scales with sample size much slower than N
2
 

(between O(N) and O(N log N); the latter is the “worst case” 

in which a sample twice as  large requires twice as  many 

fundamental shapes). 

 

 
Figs 3-5: Example of clusters found by the grid-seacrh algorithm (top), 
COBWEB (middle), and COBWEB with Bootstrap Averaging (bottom). 
In each of these plots, the x axis shows the wavelength of the observations 
in Angstroms, while the y axis shows the brightness of the galaxy at each 
wavelength. 

 

Our first improvement over the public version of 

COBWEB was to minimize the number of noisy instances 

(outliers) by using Bootstrap Averaging. This improvement 

eliminates noisy instances and allows one to build a more 

powerful classification, with 505 final clusters and ~ 10 



members per cluster, at only a 10% cost in terms of CPU time. 

The performance of the three algorithms is summarized in the 

table, and two example clusters for grid search and HC (before 

and after Bootstrap Averaging) are shown in Figs. 3-5. Each 

figure shows the SEDs of galaxies found to belong to the same 

cluster. Our results imply that the time required for SED 

fitting time of these 5228 galaxies could be reduced by a 

factor 5228/505 ~ 10 by using this powerful classification 

algorithm. In a survey like LSST, with billions of SEDs with 

only 6 features, the number of analog galaxies in each group 

will be much larger and so will be the improvement in CPU 

time. 

 

Table 1: Comparing 3 algorithms for Clustering galaxies 

CONCLUSION 

In this paper we have shown that using data mining tasks 
such as clustering can be very effective in the field of 
astrophysics, where there is a big data revolution. We came to 
the empirical conclusion that hierarchical clustering is a 
suitable tool for identifying groups of similar galaxies quickly 
and efficiently. However, we found that noisy instances still 
existed in the clusters. We then resolved this problem by using 
bootstrap averaging with hierarchical clustering to fix this 
problem. Further steps would be to inverse-noise weigh the 
different features to insure that the experimental uncertainties 
are correctly taken into account in the classification process.   
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Algorithm CPU 
Time 

Number of 
clusters 

Number of analog 
galaxies per Cluster 

Grid Search 20-50 
hours 

387 13.5 

Cobweb 4.87 
seconds 

742 7.04 

Cobweb with 
Bootstrap averaging 

5.24 
seconds 

505 10.35 


