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Abstract—The amount of data being generated and stored is 

growing exponentially, owed in part to the continuing advances 

in computer technology. These data present tremendous 

opportunities in data mining, a burgeoning field in computer 

science that focuses on the development of methods that can 

extract knowledge from data. In many real world problems, 

these data mining algorithms have access to massive amounts of 

data. Mining all the available data is prohibitive due to 

computational (time and memory) constraints. Much of the 

current research is concerned with scaling up data mining 

algorithms (i.e. improving on existing data mining algorithms for 

larger datasets). An alternative approach is to scale down the 

data. Thus, determining a smallest sufficient training set size that 

obtains the same accuracy as the entire available dataset remains 

an important research question. Our research focuses on 

selecting how many (sampling) instances to present to the data 

mining algorithm. The goals of this paper is to study and 

characterize the properties of learning curves, integrate them 

with Chebyshev Bound to come up with an efficient general 

purpose adaptive sampling schedule, and to empirically validate 

our algorithm for scaling down the data. 

 

I. INTRODUCTION  

When dealing with large finite populations, generally there 
are two accepted options. The first option is to evaluate every 
unit of the population; such a process is sometimes called a 
census. However for a large population, this option will be 
time consuming and expensive. In practice, therefore, as the 
other option we may study the characteristics of a population 
by examining only a part of it. Such a technique is known as 
sampling, one of the most popular techniques of statistics. 

The theory of sampling in statistics [1], developed during 
the past several decades, provides us with various kinds of 
reasonable scientific tools for drawing samples and making 
valid inferences about the population parameters of interest [2]. 
Therefore, sampling has been widely used in almost every 
domain of the real world as well as data mining. As a fast 
developing area, data mining is facing the challenge of large 
volume and high dimensional data sets. We believe that 
sampling methodology, with its base on statistics, should be 
theoretically and empirically useful to improve performance 
while mitigating computational requirements in data mining. 

Compared to the complete enumeration, many practical 
sampling methods possess one or more of the following 
advantages: reduced cost, greater speed, greater scope, or 
greater accuracy. With a small number of observations in 
sampling, it is possible to provide results much faster but with 
much less cost than a complete population. However, it is a 
misunderstanding that sampling can reveal the true 
characteristics of a population. There is no known method of 
sampling selection and estimation which will ensure with 
certainty that the sampling estimates will be equal to the 
unknown population characteristics. It should be understood 
that relying on a sample nearly always involves a risk of 
reaching incorrect conclusions. Sampling theory can assist in 
reducing that risk, but a certain risk is always present in every 
sampling [3]. 

One way of evaluating a sampling strategy is the Probably 
Close Enough (PCE) criterion. The key is that the sampling 
decision should occur in the context of the data mining 
algorithm we plan to use. The PCE idea is to think about taking 
a sample that is probably good enough, meaning that there is 
only a small chance that the mining algorithm could do better 
by using the entire database instead. We would like the 
smallest sample size |Di| such that: 

              Pr[ |acc(D) – acc(Di)| ≥ ε ] <= δ                  (1) 

where acc(Di) refers to the accuracy of our mining 
algorithm after seeing a sample of size Di (where Di is a subset 
of D), acc(D) refers to the accuracy after seeing all records in 
the database, ε is a parameter to be specified describing what 
“close enough” means, and δ is a parameter describing what 
“probably” means. PCE is similar to the Probably 
Approximately Correct bound in computational learning 
theory. 

Our contributions in this paper include a Generalized 
Dynamic Adaptive Sampling approach that estimates the 
number of instances required for learning curve convergence at 
each iteration. We then implement our and other approaches 
for incremental and non-incremental learners using different 
sized data sets. 

The format of the paper is as follows. We begin by 
surveying prior work on the learning curve phenomenon. In 
Section III we introduce our hill climbing approach with 
bootstrap sampling. We then perform our experiments on real 



datasets in the next section. We finally summarize our results 
and conclude. 

II. PRIOR WORK IN SAMPLING LARGE DATA 

 

A. Learning Curve Phenomenon 

A learning curve (Fig. 1) depicts the relationship between 
sample size and model accuracy. The horizontal axis represents 
n, the number of instances in a given dataset, which can vary 
between 0 and N, the total number of available instances. The 
vertical axis represents the accuracy of the model produced by 
an induction algorithm when given a sample of size n. 
Learning curves typically have a steeply sloping portion early 
in the curve, a more gently sloping middle portion, and a 
plateau late in the curve [6]. The plateau occurs when adding 
additional data instances does not improve accuracy. When a 
learning curve reaches its final plateau, we say it is converged. 
We denote the training set size at which convergence occurs as 
nmin.  

 

Fig 1: A hypothetical learning curve 

B. PROGRESSIVE SAMPLING 

John and Langley [5] define a method called Arithmetic 
Sampling, using a schedule Sa = <n0, n0+nδ, n0+2nδ, …… N>, 
where n0 is the starting sample size, and nδ is the fixed 
difference between successive terms. For example, one 
arithmetic schedule is <100, 200, 300, …… N>. As argued by 
Provost et al [7], the main drawback of arithmetic sampling is 
that if nmin is a large multiple of nδ, then the approach will 
require many runs of the underlying algorithm to reach 
convergence.  

One way to escape the limitations of arithmetic sampling is 
to use progressive sampling with a geometric schedule [7]. 
That is, Sg = <n0, a.n0, a

2
.n0, a

3
.n0, …… N> where a is the 

common ratio. One of the limitations of this approach is 
overshooting. For example, in the KDD CUP dataset, where 
nmin = 56,600, the geometric schedule is as follows: <100, 200, 
400, 800, 1600, 3200, 6400, 12800, 25600, 102400>. Notice 
here that the last sample has overshot nmin by 45,800 instances. 

C. LIMITATIONS OF PROGRESSIVE SAMPLING 

There are certain drawbacks of Progressive sampling 

a. Sampling Schedules determined apriori: One of the 
main problems with progressive sampling is that it is 
not dependent on the dataset at hand. 

b. Overshooting: As described in the previous section, 
progressive sampling overshoots nmin as the sample 
size increases exponentially with each iteration. 

c. Sample measure: There is no measure of uncertainty 
such as bias or variance used for picking any sample. 
A good sampling algorithm is expected to have low 
bias and low sampling variance. There characteristics 
have not been explored in progressive sampling 

d. Convergence tests: The tests of convergence used in 
progressive sampling are not full proof, and the 
algorithm could converge at a local optimum (if the 
learning curve is not smooth) instead of the actual 
global optimum (plateau region) 

D. DYNAMIC ADAPTIVE SAMPLING USING CHERNOFF 

INEQUALITY 

In order to overcome some of the limitations of progressive 
sampling, in our prior work we introduced a Dynamic 
Adaptive Sampling [8][9] schedule, which selects instances to 
be included in the sample that depends on data characteristics 
obtained from the current sample. The primary purpose of 
adaptive (that varies with the problem) sampling is to take 
advantage of data such as classification accuracy in order to 
obtain more precise estimates of the next sample. In 
progressive sampling, the sampling schedule was determined 
apriori independent of the dataset without taking data 
characteristics into account. 

Dynamic Adaptive sampling can be considered as sampling 
and mining being performed side by side to take advantage of 
the result of preliminary mining for more effective sampling. 
We used Chernoff inequality [12] to derive an expression 
which estimates the total number of instances needed at each 
iteration of the algorithm [8]. The number of instances to add 
at each iteration was derived to be: 
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where Di is the sample under consideration,                              
  acc(xi) is the classification accuracy of the instance xi. 
  ɛ is the approximation parameter and                                 
  δ is the probability of failure.  

At each step, we check for convergence using the equation 
below. If not converged, we take another sample of size |Di+1| 
and compute the classification accuracy.  
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Our empirical results showed that adaptive sampling 
outperforms progressive sampling techniques with respect to 
the number of instances required and the computation time in 
order to obtain the same level of accuracy, where samples are 
drawn independently from one another. Our work has been 
used in other real world applications such as nano-scale CMOS 
invertors [11] and chemical engineering [10]. However, all 
these applications use Artificial Neural networks which is a 
non-incremental algorithm.  



E. LIMITATIONS OF OUR PRIOR WORK 

a. Bias and Variance: Although our Dynamic, adaptive 

sampling technique used classification accuracy as 

the data characteristic, it did not consider sample bias 

or variance of the sample.  

b. Not useful for incremental learners: We showed 

empirically [8]  that adaptive sampling works well 

for non-incremental learners (such as neural 

networks) where the samples are drawn independent 

from one another, but fails to work for incremental 

learners. 
Our current work addresses the limitations mentioned 

above and provides a more general purpose algorithm which 
would work for all learners. 

III.    CURRENT WORK: ADAPTIVE SAMPLING USING 

BOOTSTRAP SAMPLING AND CHEBYSHEV 

INEQUALITY 

Our contributions in this paper include presenting a 
Generalized Dynamic Adaptive Sampling (GDAS) with an 
incremental approach that hill climbs to the plateau region 
using utility metrics that are estimated by sampling. The 
samples can be subsets of one another and are incrementally 
added. We will also address the limitation of not considering 
sample variance in our previous approach by using non-
parametric bootstrap sampling along with Chebyshev 
Inequality to reach the plateau region of the learning curve. We 
now provide some background to our work.  

Definition 1: (Utility confidence interval): Let u be the 
utility function. Let u(D) denote the true quality when using all 
of the data, and let û(Di) denote its estimated quality based on 
a sample Di ⊆ D of size m. Then θ is a utility confidence bound 
for u iff for any δ, 0 < δ ≤ 1,  

               Pr[ |u(D) - û(Di) | ≤ θ ] ≥ 1 – δ                     (4) 

Equation (4) says that θ provides a two-sided confidence 
interval on û(Di) with confidence δ. In other words, the 
probability of drawing a sample Di, such that the difference 
between the true and estimated utility of any hypothesis 
disagree by θ or more (in either direction) lies below δ. If, in 
addition for any δ, 0 < δ ≤ 1, and any ε > 0 there is a number m 
such that θ ≤ ε, we say that the confidence interval vanishes. In 
this case, we can shrink the confidence interval (at any 
confidence level δ) to arbitrarily low nonzero values by using a 
sufficiently large sample. 

The utility function we consider is the average over all 

instances, of some instance function f(xi), where xi ϵ D. The 

utility is then defined as:  
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(average over the entire dataset) and 
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(average over the sample Di) 

For the rest of this paper, the utility function that we will 

be using is the classification accuracy acc(xi) (i.e. 

f(xi)=acc(xi)). 

 
Definition 2: (Chebychev Inequality [12]): For any 

probability distribution, the probability of the estimated mean 
p’ being more than ɛ far away from the true mean p after m 
independently drawn points is bounded by:  
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By the property of learning curves and the weak law of 
large numbers, we know that: 

                                                                         (8) 

Using the above in Equation (8) we get: 

                            [        ]               (9) 
Here are two reasons why we use Chebyshev Inequality for 

our generalized sampling algorithm: 

a. Chebyshev bound give a better bound than Markov 
Inequality and Chernoff bound because they use more 
information about the distribution. Specifically, they 
use information about the standard deviation of the 
random variable. 

b. Chebyshev bound applies to a class of random 
variables and does give exponential fall-off of 
probability with distance from the mean. 

We will now briefly explain our hill climbing sampling 

algorithm. From an initial sample D1, whose size is (say) 

1/10
th

 the size of the entire dataset, we apply some learning 

algorithm (e.g. Decision trees, Support vector machines, 

Neural networks, etc) to it, gather utility measures – 

classification accuracy and variance– of that initial sample, 

and then determine whether to add in more number of 

instances. When to stop this process is a sequential decision 

problem.  The challenge is that we do not know the true utility 

p as that would require using all the data, which defeats the 

purpose of sampling. In order to address this challenge we 

consider pairs of samples, and look one step at a time.  

Let Dopt be the oracle specified optimal sample whose size 

is nmin (i.e. |Dopt| = nmin) where nmin is the smallest sufficient 

sample size to reach the plateau region. Ideally we would stop 

when |u(Dopt) – u(Di)| < ɛ (for some Di), that is when we are 

within ɛ distance from the optimal utility measure u(Dopt) (in 

either direction). Since we would not know Dopt for any given 

dataset, we use a “myopic” strategy of looking one step at a 

time. In order to use this myopic strategy, we need to define 

the population p and the estimate p’ as follows. 

 

Definition 3: The population we will consider are all 

distinct pairs of training set sizes (a,b), where a>b>1, 

obtained from two consecutive sampling steps. 

The destination of our hill climbing algorithm is the 

plateau region of Fig.1. At the plateau region, the Probably 

close enough criterion (1) is satisfied as u(Da) ≈ u(Db).  

Definition 4: We define the true value p as follows:   

                                                         (10) 



where u(Da) and u(Db) are utility measures of samples of 

sizes |Da| and |Db| respectively. For all practical purposes, we 

make the assumption that once we are at the plateau region 

(i.e. when u(Da) ≈ u(Db)), the true value p = 0. 

 

Definition 5: The estimated value p’ is defined as follows 

                                                           (11) 

Note that this definition is akin to the definition of the true 
value p except that the constraint |Db| > nmin may not be 
satisfied in this case (i.e. we may not have reached the plateau 
region). 

We can then use the values of p and p’ to determine the 
number of instances needed at each iteration of our algorithm 
using Chebyshev Inequality. With each hill climbing step, the 
estimated value p’ approaches closer to the true value (i.e. p 
=0). We converge when the difference between the two 
consecutive utilities becomes smaller than ε (i.e. when we have 
reached the plateau region). 

The Chebyshev inequality gives us an estimate for the total 
number of instances (m) to ensure that the difference will be 
within distance ɛ of the optimum utility. For any two distinct 
consecutive steps of the hill climbing algorithm of sample sizes 
|Di| and |Di-1|, by substituting the true value p (which is zero by 
definition above), the estimated value p’= u(Di)-u(Di-1), the 
bootstrapped variance σ

2
BOOT (discussed in section B), the given 

approximation parameter ɛ and the given confidence parameter 
δ, we reduce equation (7) to the following: 
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We then solve for m from the above equation to obtain: 
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A.  Stopping Criterion: Four Special Cases of GDAS 

An important ingredient for sampling algorithms is to 

determine when to stop at a particular sample. At each 

iteration of our hill climbing algorithm, we check for 

convergence, by performing the following two tasks: 

a. Check if the difference in utilities of two consecutive 

steps to be greater than or less than the approximation 

parameter ɛ. (i.e. Compare |u(Di)-u(Di-1)| with ɛ), and 

b. Compute the probability of event (a) occurring with 

Chebyshev inequality and compare this probability 

with the predefined confidence parameter δ. 

Thus we would have four different criteria as follows: 

Case (a): |u(Di)-u(Di-1)| < ɛ and (
 

 
)
  

 
    

We have reached convergence with probability of success 

≥ 1-δ and the error has stabilized. 

Case(b): |u(Di)-u(Di-1)| < ɛ and (
 

 
)
  

 
    

Although it appears that we have reached convergence 

from |u(Di)-u(Di-1)| < ɛ, we have not done so, as the second 

constraint shows us. We then discard this sample and start 

with a new sample. 

Case (c): |u(Di)-u(Di-1)| ≥ ɛ and (
 

 
)
  

 
   

 

We have reached convergence as the probability of 

exceeding ɛ is less than δ. 

Case (d): |u(Di)-u(Di-1)| ≥ ɛ and (
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We solve for the number of instances m using the 

previously derived equation. 
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And add m instances to form the next sample Di+1. 

B. Bootstrap Sampling 

In order to use the Chebyshev Inequality to solve for the 
number of instances at each iteration, we need to compute the 
variance term σ

2
. This variance σ

2
 requires that the samples be 

independent of one another. However, in our method we add 
samples incrementally. This makes the samples dependent on 
one another as the old sample becomes a subset of the newly 
added incremental sample – Di ⊆ Di+1 (=Di+m). Davidson [16] 
has shown that the posterior standard deviation obtained by 
bootstrapping σBOOT provides a good estimate for this standard 
deviation σ. Hence we use non-parametric bootstrapping (i.e. 
sampling with replacement) with our incremental algorithm, 
and determine the bootstrapped variance σ

2
BOOT, which would 

provide a good estimate for independent random samples. 

1. Select B independent bootstrap samples  
  

         
   

  each consisting of n data values 

drawn with replacement from the original sample. 

2. Evaluate the variance corresponding to each bootstrap 

sample     
   

3. Estimate the boostrap variance using the following: 
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where  
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To show that bootstrapped variance produces good 
estimates of the actual variance, we performed the following 
experiment. We took a sample from the CREDIT dataset, say 
of size n. We then took 300 independent samples of size n from 
the entire dataset and obtained the actual variance σ

2
. We then 

took 300 bootstrapped samples from the original sample of size 
n and then computed the variance σ

2
BOOT. The results are shown 

in Table 1.2. 

Sample Size Accuracy σ2(acci) σ2
BOOT(acci) 

100 67.4 10.04 11.75 

200 71.2 6.16 7.08 

300 71.65 5.84 6.18 

400 71.83 5.52 5.98 

500 72.98 1.48 1.68 

600 73.65 1.11 1.35 

700 74.02 0.68 0.61 

Table 1.2: Comparison of the actual and the bootstrapped variance                                        
for CREDIT_G dataset. 



C. GDAS Algorithm 

Algorithm GDAS(D,ɛ ,δ) 

Input: Training dataset D, approximation parameter ɛ and the 
probability measure δ 

Output: Total number of instances and mean computation time 
(for convergence) 

Step 0: û(D0) ← 0 

Step 1: Randomly select (1/10)|D| instances (=|D1|). Apply the 
learner (e.g. Decision Tree), determine û(D1) (using Equation (5)) 

Step 2: For each iteration i (≥1) do: 

a. Check for convergence using the criteria: 

Test (
 

 
)
  

 
    (

 

 
)
  

 
    

                    Yes, Exit 
Discard the 

sample and start 
again 

                      Yes, Exit 
Add instances 
according to 

Chebyshev Bound 

b. Add m instances using equation 14 to form the new sample 
Di+1 

c. Apply the classification mining algorithm on the sample and 
determine û(Di+1) 

Fig 2: Generalized Dynamic Adaptive Sampling Algorithm (GDAS) 

Theorem 1: The GDAS(D,ɛ,δ) algorithm produces a series 
of utilities û(D0), û(D1), û(D2),……û(Dm), such that, 

(1) û(Dm) ≥ û(Di), 0 ≤ i ≤ m-1 

(2) the sample mean 
 

 
  ∑ [              ]

 
    

converges to the population mean as n → ∞ where n is 
the number of samples. 

Proof: Our approach moves from Di to Di+1 iff the expected 
utility u(Di+1) is better than u(Di) by at least ɛ, and hence (1) 
follows. We define qi=û(Di+1)-û(Di). Let S be the sample mean 
over n samples given by:  

                                          
 

 
 ∑   

 
    

This average tends to the true population mean as n → ∞ at the 
rate of convergence given by Chernoff Bounds: The 
probability that “qi is more than μ+γ” goes to 0 exponentially 
fast as n increases; and for a fixed n, exponentially as γ 
increases and hence (2) follows. Formally we have: 

  [       ]   
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)
 

 

where Λ is the range of possible values for û(Di+1) - û(Di).    □ 

IV.   EMPIRICAL RESULTS 

We now present from our experiments on three datasets 
from the UCI repository: LED, WAVEFORM and CENSUS 
(adult) which was also used by Provost et al [7] and two 
massive real world Web traces: KDD CUP 2000 and NASA-
HTTP. We use C4.5- decision trees (incremental learner) as 
our classification algorithm for KDD CUP 2000 and use 

Neural Network (non-incremental learner) for NASA-HTTP. 
We compare our method with other methods (Full, Geo, 
Chernoff, Oracle), and the results are in Table 4.1 and 4.2 

Web Applications: In order to evaluate the different 
comparisons on large real world problems, we ran it on two 
massive Web traces. The first was the dataset used in the KDD 
CUP 2000 competition. The second was a trace of all requests 
made to the website of the busy NASA-HTTP which consists 
of one month worth of all HTTP requests to the NASA 
Kennedy Space Center WWW server in Florida.  

The KDD cup data consists of 777,000 web page requests 
collected from an e-commerce site. Each request is annotated 
with a request session ID and a large collection of attributes 
describing the product in the requested page. We focused on 
one of the fields in the log, “Assortment Level 1”. For each 
session we produced an example with one Boolean attribute – 
“True” if the session visited a page with that category. There 
were 235,000 sessions in the log which we used for our 
experiments. 

The NASA-HTTP dataset was created from a log of every 
request made to the NASA Kennedy Space Center WWW 
server in Florida. We extracted dataset of size 461,612 
instances from this log in a manner similar to the KDD cup 
dataset. 

We compare the different approaches with our method 
using the following two performance criteria. 

a. The mean computational time: The runtimes averaged 
over 20 runs of each of the five datasets 

b. The total number of instances needed to converge: If 
the sampling schedule is S=<|D1|, |D2|, |D3|…..|Dk|>, 
then the total number of instances would be 
|D1|+|D2|+|D3|+…+|Dk|. 

We compare our convergence method with other methods, 

which are as follows: 

(Full): SN={N}, a single sample with all the instances. 

This is the most commonly used method. This method suffers 

from both speed and memory drawbacks. 

(Geo): Geometric Sampling [7], in which the sample size 

is created geometrically, Sg = {|D1|,a.|D1|,a
2
.|D2|…..a

k
|D1|}. 

We use |D1|=100 and a=2 as used by Provost et al [7]. 

(Chernoff): Adaptive sampling using Chernoff Bounds [8] 

where we use ɛ = 0.001 and δ = 0.05 (95% probability).  

(GDAS): Our Generalized Dynamic Adaptive Sampling 

approach where we use ɛ = 0.001 and δ = 0.05.   

(Oracle): SO=<nmin>, the optimal sample size determined 

by the omniscient oracle; we determined nmin empirically by 

analyzing the full learning curve beforehand.  
Dataset Full: 

SN=<N> 
Geo: 
Sg=ak.|Di| 

Chernoff GDAS Oracle 
SO=<nmin> 

LED 100,000 6,300 6,100 5,100 2,000 

WAFEFORM 100,000 25,500 20,030 16,108 12,000 

CENSUS 32,000 25,500 14,322 10,014 8,000 

KDD CUP 235,000 204,700 304,322 67,800 56,600 

NASA-HTTP 461,612 409,500 278,433 158,345 130,645 

Table 4.1: Comparison of the total number of instances required for 
the different methods to reach convergence. 

 



Dataset Full: 
SN=<N> 

Geo: 
Sg=ak.|Di| 

Chernoff GDAS Oracle 
SO=<nmin> 

LED 46.51 15.67 20.34 25.87 5.72 

WAFEFORM 558.91 89.76 124.45 156.73 32.85 

CENSUS 48.76 10.77 18.93 27.84 13.87 

KDD CUP 17,870.59 5,616.89 7,198.24 3,116.84 1,826.16 

NASA-HTTP 38,160.78 13,482.49 10,232.44 8,713.00 4,719.85 

Table 4.2: Comparison of the mean computational time (in CPU 
seconds) required for the different methods to obtain the same accuracy 
(averaged over 20 runs of the experiment). 

A. Discussion 

1. Geometric Sampling: Geometric sampling is between 

three and six times faster in terms of the computation 

time than learning with all of the data (Full) 

2. GDAS v/s other approaches: 

      (a) GDAS v/s Full: The adaptive scheduling approach is 

between two and four times faster than using the entire dataset 

to obtain the same accuracy. 

(b) GDAS v/s Geo: For medium sized datasets (UCI 

repository) GDAS outperforms Geo by about 20% in terms of 

the number of instances required for convergence (see Table 

4.1). For massive datasets, geometric sampling overshoots by 

a very large amount. For example in the KDD CUP dataset, 

where nmin = 56,600, the geometric schedule is as follows: 

<100, 200, 400, 800, 3200, 6400, 12800, 25600, 51200, 

102400>. Notice here that the last sample has overshot nmin by 

45,800 instances. In such massive datasets, GDAS outperforms 

Geo by more than 50%. 

In terms of computational time, Geo outperforms better 

than GDAS for small and medium sized datasets (see Table 

4.2) mainly due to the bootstrapping overhead of GDAS. 

However for very large datasets, GDAS performs better than 

Geo, because it minimizes overshooting nmin. 

(c) In all datasets, GDAS comes closest to the optimal 

oracle in terms of the number of instances required for 

convergence. (see Table 4.1) 

3) GDAS v/s Chernoff Bound: 

(a) Incremental Learners: Chernoff inequality performs 

poorly (as expected) for KDD CUP data (incremental learner). 

GDAS outperforms Chernoff Inequality by 50%. 

(b) Non-incremental learners:GDAS outperforms Chernoff 

by 22% in the number of instances needed for convergence. 

 

We close this section with some general comments on the 

GDAS algorithm: 

a. GDAS will process more samples using later elements 

than using the earlier ones (similar to geometric 

sampling), as its convergence tests are increasingly 

more difficult to pass. This is desirable, as the overall 

system is dealing with increasing number of samples 

using later, more better instances. 

b. At any time, GDAS will provide a usable result, with 

the property that later models are clearly more better 

than earlier models i.e. for i > j, u(Di) > u(Dj) with 

high probability.  

V.   CONCLUSION 

Computing the optimal sample size is fundamental 

question to answer in data mining. Prior work in this area 

showed that the progressive sampling literature allows for a 

fixed apriori specification of the number of instances for the 

sampling schedule. Our prior work using Chernoff bounds 

although performed better than progressive sampling, worked 

well only with non-incremental learners. Our contributions in 

this paper include a general purpose technique that works for 

all learners. We showed empirically that our approach 

outperforms other approaches with respect to number of 

instances required and computational time. Future work will 

look at exploring statistical bounds to other areas of data 

mining such as clustering and classification.  
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