

Intelligent Sampling for Big Data Using Bootstrap

Sampling and Chebyshev Inequality
Ashwin Satyanarayana

N-913, Computer Systems Technology

New York City College of Technology

300 Jay Street, Brooklyn, NY - 11201

asatyanarayana@citytech.cuny.edu

Abstract—The amount of data being generated and stored is

growing exponentially, owed in part to the continuing advances

in computer technology. These data present tremendous

opportunities in data mining, a burgeoning field in computer

science that focuses on the development of methods that can

extract knowledge from data. In many real world problems,

these data mining algorithms have access to massive amounts of

data. Mining all the available data is prohibitive due to

computational (time and memory) constraints. Much of the

current research is concerned with scaling up data mining

algorithms (i.e. improving on existing data mining algorithms for

larger datasets). An alternative approach is to scale down the

data. Thus, determining a smallest sufficient training set size that

obtains the same accuracy as the entire available dataset remains

an important research question. Our research focuses on

selecting how many (sampling) instances to present to the data

mining algorithm. The goals of this paper is to study and

characterize the properties of learning curves, integrate them

with Chebyshev Bound to come up with an efficient general

purpose adaptive sampling schedule, and to empirically validate

our algorithm for scaling down the data.

I. INTRODUCTION

When dealing with large finite populations, generally there
are two accepted options. The first option is to evaluate every
unit of the population; such a process is sometimes called a
census. However for a large population, this option will be
time consuming and expensive. In practice, therefore, as the
other option we may study the characteristics of a population
by examining only a part of it. Such a technique is known as
sampling, one of the most popular techniques of statistics.

The theory of sampling in statistics [1], developed during
the past several decades, provides us with various kinds of
reasonable scientific tools for drawing samples and making
valid inferences about the population parameters of interest [2].
Therefore, sampling has been widely used in almost every
domain of the real world as well as data mining. As a fast
developing area, data mining is facing the challenge of large
volume and high dimensional data sets. We believe that
sampling methodology, with its base on statistics, should be
theoretically and empirically useful to improve performance
while mitigating computational requirements in data mining.

Compared to the complete enumeration, many practical
sampling methods possess one or more of the following
advantages: reduced cost, greater speed, greater scope, or
greater accuracy. With a small number of observations in
sampling, it is possible to provide results much faster but with
much less cost than a complete population. However, it is a
misunderstanding that sampling can reveal the true
characteristics of a population. There is no known method of
sampling selection and estimation which will ensure with
certainty that the sampling estimates will be equal to the
unknown population characteristics. It should be understood
that relying on a sample nearly always involves a risk of
reaching incorrect conclusions. Sampling theory can assist in
reducing that risk, but a certain risk is always present in every
sampling [3].

One way of evaluating a sampling strategy is the Probably
Close Enough (PCE) criterion. The key is that the sampling
decision should occur in the context of the data mining
algorithm we plan to use. The PCE idea is to think about taking
a sample that is probably good enough, meaning that there is
only a small chance that the mining algorithm could do better
by using the entire database instead. We would like the
smallest sample size |Di| such that:

 Pr[|acc(D) – acc(Di)| ≥ ε] <= δ (1)

where acc(Di) refers to the accuracy of our mining
algorithm after seeing a sample of size Di (where Di is a subset
of D), acc(D) refers to the accuracy after seeing all records in
the database, ε is a parameter to be specified describing what
“close enough” means, and δ is a parameter describing what
“probably” means. PCE is similar to the Probably
Approximately Correct bound in computational learning
theory.

Our contributions in this paper include a Generalized
Dynamic Adaptive Sampling approach that estimates the
number of instances required for learning curve convergence at
each iteration. We then implement our and other approaches
for incremental and non-incremental learners using different
sized data sets.

The format of the paper is as follows. We begin by
surveying prior work on the learning curve phenomenon. In
Section III we introduce our hill climbing approach with
bootstrap sampling. We then perform our experiments on real

datasets in the next section. We finally summarize our results
and conclude.

II. PRIOR WORK IN SAMPLING LARGE DATA

A. Learning Curve Phenomenon

A learning curve (Fig. 1) depicts the relationship between
sample size and model accuracy. The horizontal axis represents
n, the number of instances in a given dataset, which can vary
between 0 and N, the total number of available instances. The
vertical axis represents the accuracy of the model produced by
an induction algorithm when given a sample of size n.
Learning curves typically have a steeply sloping portion early
in the curve, a more gently sloping middle portion, and a
plateau late in the curve [6]. The plateau occurs when adding
additional data instances does not improve accuracy. When a
learning curve reaches its final plateau, we say it is converged.
We denote the training set size at which convergence occurs as
nmin.

Fig 1: A hypothetical learning curve

B. PROGRESSIVE SAMPLING

John and Langley [5] define a method called Arithmetic
Sampling, using a schedule Sa = <n0, n0+nδ, n0+2nδ, …… N>,
where n0 is the starting sample size, and nδ is the fixed
difference between successive terms. For example, one
arithmetic schedule is <100, 200, 300, …… N>. As argued by
Provost et al [7], the main drawback of arithmetic sampling is
that if nmin is a large multiple of nδ, then the approach will
require many runs of the underlying algorithm to reach
convergence.

One way to escape the limitations of arithmetic sampling is
to use progressive sampling with a geometric schedule [7].
That is, Sg = <n0, a.n0, a

2
.n0, a

3
.n0, …… N> where a is the

common ratio. One of the limitations of this approach is
overshooting. For example, in the KDD CUP dataset, where
nmin = 56,600, the geometric schedule is as follows: <100, 200,
400, 800, 1600, 3200, 6400, 12800, 25600, 102400>. Notice
here that the last sample has overshot nmin by 45,800 instances.

C. LIMITATIONS OF PROGRESSIVE SAMPLING

There are certain drawbacks of Progressive sampling

a. Sampling Schedules determined apriori: One of the
main problems with progressive sampling is that it is
not dependent on the dataset at hand.

b. Overshooting: As described in the previous section,
progressive sampling overshoots nmin as the sample
size increases exponentially with each iteration.

c. Sample measure: There is no measure of uncertainty
such as bias or variance used for picking any sample.
A good sampling algorithm is expected to have low
bias and low sampling variance. There characteristics
have not been explored in progressive sampling

d. Convergence tests: The tests of convergence used in
progressive sampling are not full proof, and the
algorithm could converge at a local optimum (if the
learning curve is not smooth) instead of the actual
global optimum (plateau region)

D. DYNAMIC ADAPTIVE SAMPLING USING CHERNOFF

INEQUALITY

In order to overcome some of the limitations of progressive
sampling, in our prior work we introduced a Dynamic
Adaptive Sampling [8][9] schedule, which selects instances to
be included in the sample that depends on data characteristics
obtained from the current sample. The primary purpose of
adaptive (that varies with the problem) sampling is to take
advantage of data such as classification accuracy in order to
obtain more precise estimates of the next sample. In
progressive sampling, the sampling schedule was determined
apriori independent of the dataset without taking data
characteristics into account.

Dynamic Adaptive sampling can be considered as sampling
and mining being performed side by side to take advantage of
the result of preliminary mining for more effective sampling.
We used Chernoff inequality [12] to derive an expression
which estimates the total number of instances needed at each
iteration of the algorithm [8]. The number of instances to add
at each iteration was derived to be:

∑

[

] (2)

where Di is the sample under consideration,
 acc(xi) is the classification accuracy of the instance xi.
 ɛ is the approximation parameter and
 δ is the probability of failure.

At each step, we check for convergence using the equation
below. If not converged, we take another sample of size |Di+1|
and compute the classification accuracy.

 |

∑

∑

 | (3)

Our empirical results showed that adaptive sampling
outperforms progressive sampling techniques with respect to
the number of instances required and the computation time in
order to obtain the same level of accuracy, where samples are
drawn independently from one another. Our work has been
used in other real world applications such as nano-scale CMOS
invertors [11] and chemical engineering [10]. However, all
these applications use Artificial Neural networks which is a
non-incremental algorithm.

E. LIMITATIONS OF OUR PRIOR WORK

a. Bias and Variance: Although our Dynamic, adaptive

sampling technique used classification accuracy as

the data characteristic, it did not consider sample bias

or variance of the sample.

b. Not useful for incremental learners: We showed

empirically [8] that adaptive sampling works well

for non-incremental learners (such as neural

networks) where the samples are drawn independent

from one another, but fails to work for incremental

learners.
Our current work addresses the limitations mentioned

above and provides a more general purpose algorithm which
would work for all learners.

III. CURRENT WORK: ADAPTIVE SAMPLING USING

BOOTSTRAP SAMPLING AND CHEBYSHEV

INEQUALITY

Our contributions in this paper include presenting a
Generalized Dynamic Adaptive Sampling (GDAS) with an
incremental approach that hill climbs to the plateau region
using utility metrics that are estimated by sampling. The
samples can be subsets of one another and are incrementally
added. We will also address the limitation of not considering
sample variance in our previous approach by using non-
parametric bootstrap sampling along with Chebyshev
Inequality to reach the plateau region of the learning curve. We
now provide some background to our work.

Definition 1: (Utility confidence interval): Let u be the
utility function. Let u(D) denote the true quality when using all
of the data, and let û(Di) denote its estimated quality based on
a sample Di ⊆ D of size m. Then θ is a utility confidence bound
for u iff for any δ, 0 < δ ≤ 1,

 Pr[|u(D) - û(Di) | ≤ θ] ≥ 1 – δ (4)

Equation (4) says that θ provides a two-sided confidence
interval on û(Di) with confidence δ. In other words, the
probability of drawing a sample Di, such that the difference
between the true and estimated utility of any hypothesis
disagree by θ or more (in either direction) lies below δ. If, in
addition for any δ, 0 < δ ≤ 1, and any ε > 0 there is a number m
such that θ ≤ ε, we say that the confidence interval vanishes. In
this case, we can shrink the confidence interval (at any
confidence level δ) to arbitrarily low nonzero values by using a
sufficiently large sample.

The utility function we consider is the average over all

instances, of some instance function f(xi), where xi ϵ D. The

utility is then defined as:

∑

 (5)

(average over the entire dataset) and

∑

 (6)

(average over the sample Di)

For the rest of this paper, the utility function that we will

be using is the classification accuracy acc(xi) (i.e.

f(xi)=acc(xi)).

Definition 2: (Chebychev Inequality [12]): For any

probability distribution, the probability of the estimated mean
p’ being more than ɛ far away from the true mean p after m
independently drawn points is bounded by:

 [] (

)

 (7)

By the property of learning curves and the weak law of
large numbers, we know that:

 (8)

Using the above in Equation (8) we get:

 [] (9)
Here are two reasons why we use Chebyshev Inequality for

our generalized sampling algorithm:

a. Chebyshev bound give a better bound than Markov
Inequality and Chernoff bound because they use more
information about the distribution. Specifically, they
use information about the standard deviation of the
random variable.

b. Chebyshev bound applies to a class of random
variables and does give exponential fall-off of
probability with distance from the mean.

We will now briefly explain our hill climbing sampling

algorithm. From an initial sample D1, whose size is (say)

1/10
th

 the size of the entire dataset, we apply some learning

algorithm (e.g. Decision trees, Support vector machines,

Neural networks, etc) to it, gather utility measures –

classification accuracy and variance– of that initial sample,

and then determine whether to add in more number of

instances. When to stop this process is a sequential decision

problem. The challenge is that we do not know the true utility

p as that would require using all the data, which defeats the

purpose of sampling. In order to address this challenge we

consider pairs of samples, and look one step at a time.

Let Dopt be the oracle specified optimal sample whose size

is nmin (i.e. |Dopt| = nmin) where nmin is the smallest sufficient

sample size to reach the plateau region. Ideally we would stop

when |u(Dopt) – u(Di)| < ɛ (for some Di), that is when we are

within ɛ distance from the optimal utility measure u(Dopt) (in

either direction). Since we would not know Dopt for any given

dataset, we use a “myopic” strategy of looking one step at a

time. In order to use this myopic strategy, we need to define

the population p and the estimate p’ as follows.

Definition 3: The population we will consider are all

distinct pairs of training set sizes (a,b), where a>b>1,

obtained from two consecutive sampling steps.

The destination of our hill climbing algorithm is the

plateau region of Fig.1. At the plateau region, the Probably

close enough criterion (1) is satisfied as u(Da) ≈ u(Db).

Definition 4: We define the true value p as follows:

 (10)

where u(Da) and u(Db) are utility measures of samples of

sizes |Da| and |Db| respectively. For all practical purposes, we

make the assumption that once we are at the plateau region

(i.e. when u(Da) ≈ u(Db)), the true value p = 0.

Definition 5: The estimated value p’ is defined as follows

 (11)

Note that this definition is akin to the definition of the true
value p except that the constraint |Db| > nmin may not be
satisfied in this case (i.e. we may not have reached the plateau
region).

We can then use the values of p and p’ to determine the
number of instances needed at each iteration of our algorithm
using Chebyshev Inequality. With each hill climbing step, the
estimated value p’ approaches closer to the true value (i.e. p
=0). We converge when the difference between the two
consecutive utilities becomes smaller than ε (i.e. when we have
reached the plateau region).

The Chebyshev inequality gives us an estimate for the total
number of instances (m) to ensure that the difference will be
within distance ɛ of the optimum utility. For any two distinct
consecutive steps of the hill climbing algorithm of sample sizes
|Di| and |Di-1|, by substituting the true value p (which is zero by
definition above), the estimated value p’= u(Di)-u(Di-1), the
bootstrapped variance σ

2
BOOT (discussed in section B), the given

approximation parameter ɛ and the given confidence parameter
δ, we reduce equation (7) to the following:

 [] (

)

 (12)

We then solve for m from the above equation to obtain:

 (

)

 (13)

A. Stopping Criterion: Four Special Cases of GDAS

An important ingredient for sampling algorithms is to

determine when to stop at a particular sample. At each

iteration of our hill climbing algorithm, we check for

convergence, by performing the following two tasks:

a. Check if the difference in utilities of two consecutive

steps to be greater than or less than the approximation

parameter ɛ. (i.e. Compare |u(Di)-u(Di-1)| with ɛ), and

b. Compute the probability of event (a) occurring with

Chebyshev inequality and compare this probability

with the predefined confidence parameter δ.

Thus we would have four different criteria as follows:

Case (a): |u(Di)-u(Di-1)| < ɛ and (

)

We have reached convergence with probability of success

≥ 1-δ and the error has stabilized.

Case(b): |u(Di)-u(Di-1)| < ɛ and (

)

Although it appears that we have reached convergence

from |u(Di)-u(Di-1)| < ɛ, we have not done so, as the second

constraint shows us. We then discard this sample and start

with a new sample.

Case (c): |u(Di)-u(Di-1)| ≥ ɛ and (

)

We have reached convergence as the probability of

exceeding ɛ is less than δ.

Case (d): |u(Di)-u(Di-1)| ≥ ɛ and (

)

We solve for the number of instances m using the

previously derived equation.

 (

)

 (14)

And add m instances to form the next sample Di+1.

B. Bootstrap Sampling

In order to use the Chebyshev Inequality to solve for the
number of instances at each iteration, we need to compute the
variance term σ

2
. This variance σ

2
 requires that the samples be

independent of one another. However, in our method we add
samples incrementally. This makes the samples dependent on
one another as the old sample becomes a subset of the newly
added incremental sample – Di ⊆ Di+1 (=Di+m). Davidson [16]
has shown that the posterior standard deviation obtained by
bootstrapping σBOOT provides a good estimate for this standard
deviation σ. Hence we use non-parametric bootstrapping (i.e.
sampling with replacement) with our incremental algorithm,
and determine the bootstrapped variance σ

2
BOOT, which would

provide a good estimate for independent random samples.

1. Select B independent bootstrap samples

 each consisting of n data values

drawn with replacement from the original sample.

2. Evaluate the variance corresponding to each bootstrap

sample

3. Estimate the boostrap variance using the following:

{∑ [(

) ̅̅̅̅]

 }

 (15)

where

 ̅̅ ̅

∑

 (16)

To show that bootstrapped variance produces good
estimates of the actual variance, we performed the following
experiment. We took a sample from the CREDIT dataset, say
of size n. We then took 300 independent samples of size n from
the entire dataset and obtained the actual variance σ

2
. We then

took 300 bootstrapped samples from the original sample of size
n and then computed the variance σ

2
BOOT. The results are shown

in Table 1.2.

Sample Size Accuracy σ2(acci) σ2
BOOT(acci)

100 67.4 10.04 11.75

200 71.2 6.16 7.08

300 71.65 5.84 6.18

400 71.83 5.52 5.98

500 72.98 1.48 1.68

600 73.65 1.11 1.35

700 74.02 0.68 0.61

Table 1.2: Comparison of the actual and the bootstrapped variance
for CREDIT_G dataset.

C. GDAS Algorithm

Algorithm GDAS(D,ɛ ,δ)

Input: Training dataset D, approximation parameter ɛ and the
probability measure δ

Output: Total number of instances and mean computation time
(for convergence)

Step 0: û(D0) ← 0

Step 1: Randomly select (1/10)|D| instances (=|D1|). Apply the
learner (e.g. Decision Tree), determine û(D1) (using Equation (5))

Step 2: For each iteration i (≥1) do:

a. Check for convergence using the criteria:

Test (

)

 (

)

 Yes, Exit
Discard the

sample and start
again

 Yes, Exit
Add instances
according to

Chebyshev Bound

b. Add m instances using equation 14 to form the new sample
Di+1

c. Apply the classification mining algorithm on the sample and
determine û(Di+1)

Fig 2: Generalized Dynamic Adaptive Sampling Algorithm (GDAS)

Theorem 1: The GDAS(D,ɛ,δ) algorithm produces a series
of utilities û(D0), û(D1), û(D2),……û(Dm), such that,

(1) û(Dm) ≥ û(Di), 0 ≤ i ≤ m-1

(2) the sample mean

 ∑ []

converges to the population mean as n → ∞ where n is
the number of samples.

Proof: Our approach moves from Di to Di+1 iff the expected
utility u(Di+1) is better than u(Di) by at least ɛ, and hence (1)
follows. We define qi=û(Di+1)-û(Di). Let S be the sample mean
over n samples given by:

 ∑

This average tends to the true population mean as n → ∞ at the
rate of convergence given by Chernoff Bounds: The
probability that “qi is more than μ+γ” goes to 0 exponentially
fast as n increases; and for a fixed n, exponentially as γ
increases and hence (2) follows. Formally we have:

 []
 (

)

where Λ is the range of possible values for û(Di+1) - û(Di). □

IV. EMPIRICAL RESULTS

We now present from our experiments on three datasets
from the UCI repository: LED, WAVEFORM and CENSUS
(adult) which was also used by Provost et al [7] and two
massive real world Web traces: KDD CUP 2000 and NASA-
HTTP. We use C4.5- decision trees (incremental learner) as
our classification algorithm for KDD CUP 2000 and use

Neural Network (non-incremental learner) for NASA-HTTP.
We compare our method with other methods (Full, Geo,
Chernoff, Oracle), and the results are in Table 4.1 and 4.2

Web Applications: In order to evaluate the different
comparisons on large real world problems, we ran it on two
massive Web traces. The first was the dataset used in the KDD
CUP 2000 competition. The second was a trace of all requests
made to the website of the busy NASA-HTTP which consists
of one month worth of all HTTP requests to the NASA
Kennedy Space Center WWW server in Florida.

The KDD cup data consists of 777,000 web page requests
collected from an e-commerce site. Each request is annotated
with a request session ID and a large collection of attributes
describing the product in the requested page. We focused on
one of the fields in the log, “Assortment Level 1”. For each
session we produced an example with one Boolean attribute –
“True” if the session visited a page with that category. There
were 235,000 sessions in the log which we used for our
experiments.

The NASA-HTTP dataset was created from a log of every
request made to the NASA Kennedy Space Center WWW
server in Florida. We extracted dataset of size 461,612
instances from this log in a manner similar to the KDD cup
dataset.

We compare the different approaches with our method
using the following two performance criteria.

a. The mean computational time: The runtimes averaged
over 20 runs of each of the five datasets

b. The total number of instances needed to converge: If
the sampling schedule is S=<|D1|, |D2|, |D3|…..|Dk|>,
then the total number of instances would be
|D1|+|D2|+|D3|+…+|Dk|.

We compare our convergence method with other methods,

which are as follows:

(Full): SN={N}, a single sample with all the instances.

This is the most commonly used method. This method suffers

from both speed and memory drawbacks.

(Geo): Geometric Sampling [7], in which the sample size

is created geometrically, Sg = {|D1|,a.|D1|,a
2
.|D2|…..a

k
|D1|}.

We use |D1|=100 and a=2 as used by Provost et al [7].

(Chernoff): Adaptive sampling using Chernoff Bounds [8]

where we use ɛ = 0.001 and δ = 0.05 (95% probability).

(GDAS): Our Generalized Dynamic Adaptive Sampling

approach where we use ɛ = 0.001 and δ = 0.05.

(Oracle): SO=<nmin>, the optimal sample size determined

by the omniscient oracle; we determined nmin empirically by

analyzing the full learning curve beforehand.
Dataset Full:

SN=<N>
Geo:
Sg=ak.|Di|

Chernoff GDAS Oracle
SO=<nmin>

LED 100,000 6,300 6,100 5,100 2,000

WAFEFORM 100,000 25,500 20,030 16,108 12,000

CENSUS 32,000 25,500 14,322 10,014 8,000

KDD CUP 235,000 204,700 304,322 67,800 56,600

NASA-HTTP 461,612 409,500 278,433 158,345 130,645

Table 4.1: Comparison of the total number of instances required for
the different methods to reach convergence.

Dataset Full:
SN=<N>

Geo:
Sg=ak.|Di|

Chernoff GDAS Oracle
SO=<nmin>

LED 46.51 15.67 20.34 25.87 5.72

WAFEFORM 558.91 89.76 124.45 156.73 32.85

CENSUS 48.76 10.77 18.93 27.84 13.87

KDD CUP 17,870.59 5,616.89 7,198.24 3,116.84 1,826.16

NASA-HTTP 38,160.78 13,482.49 10,232.44 8,713.00 4,719.85

Table 4.2: Comparison of the mean computational time (in CPU
seconds) required for the different methods to obtain the same accuracy
(averaged over 20 runs of the experiment).

A. Discussion

1. Geometric Sampling: Geometric sampling is between

three and six times faster in terms of the computation

time than learning with all of the data (Full)

2. GDAS v/s other approaches:

 (a) GDAS v/s Full: The adaptive scheduling approach is

between two and four times faster than using the entire dataset

to obtain the same accuracy.

(b) GDAS v/s Geo: For medium sized datasets (UCI

repository) GDAS outperforms Geo by about 20% in terms of

the number of instances required for convergence (see Table

4.1). For massive datasets, geometric sampling overshoots by

a very large amount. For example in the KDD CUP dataset,

where nmin = 56,600, the geometric schedule is as follows:

<100, 200, 400, 800, 3200, 6400, 12800, 25600, 51200,

102400>. Notice here that the last sample has overshot nmin by

45,800 instances. In such massive datasets, GDAS outperforms

Geo by more than 50%.

In terms of computational time, Geo outperforms better

than GDAS for small and medium sized datasets (see Table

4.2) mainly due to the bootstrapping overhead of GDAS.

However for very large datasets, GDAS performs better than

Geo, because it minimizes overshooting nmin.

(c) In all datasets, GDAS comes closest to the optimal

oracle in terms of the number of instances required for

convergence. (see Table 4.1)

3) GDAS v/s Chernoff Bound:

(a) Incremental Learners: Chernoff inequality performs

poorly (as expected) for KDD CUP data (incremental learner).

GDAS outperforms Chernoff Inequality by 50%.

(b) Non-incremental learners:GDAS outperforms Chernoff

by 22% in the number of instances needed for convergence.

We close this section with some general comments on the

GDAS algorithm:

a. GDAS will process more samples using later elements

than using the earlier ones (similar to geometric

sampling), as its convergence tests are increasingly

more difficult to pass. This is desirable, as the overall

system is dealing with increasing number of samples

using later, more better instances.

b. At any time, GDAS will provide a usable result, with

the property that later models are clearly more better

than earlier models i.e. for i > j, u(Di) > u(Dj) with

high probability.

V. CONCLUSION

Computing the optimal sample size is fundamental

question to answer in data mining. Prior work in this area

showed that the progressive sampling literature allows for a

fixed apriori specification of the number of instances for the

sampling schedule. Our prior work using Chernoff bounds

although performed better than progressive sampling, worked

well only with non-incremental learners. Our contributions in

this paper include a general purpose technique that works for

all learners. We showed empirically that our approach

outperforms other approaches with respect to number of

instances required and computational time. Future work will

look at exploring statistical bounds to other areas of data

mining such as clustering and classification.

REFERENCES

[1] Vladimir N Vapnik: Statistical Learning Theory. John Wiley & Sons.
New York, NY (1998)

[2] Valiant, L.G. 1984. A theory of the Learnable Communications of the
ACM 27(11), 1134-1142 (1984)

[3] Tryfos, P. Sampling Methods for Applied Research: Text and Cases,
John Wiley & Sons, Inc (1996)

[4] Haussler, D., Kearns, M., Seung, H.S., Tishby, N.: Rigorous Learning
Curve Bounds from Statistical Mechanics. In: Proc. 7th ACM Workshop
on Comp. Learning Theory (1994)

[5] John, G., Langley, P.: Static versus dynamic sampling for data mining.
In: Proc. of the 2nd International Conference on Knowledge Discovery
and Data Mining, pp. 367–370 (1996)

[6] Meek, C., Theisson, B., Heckerman, D.: The learning-curve sampling
method applied to model- based clustering. The Journal of Machine
Learning Research (2002)

[7] Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In:
Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, pp. 23–32 (1999)

[8] Satyanarayana. A., Davidson. I.: A Dynamic Adaptive Sampling
Algorithm (DASA) for Real world Applications: Finger Print
Recognition and Face Recognition. In Proc.15th ISMIS 2005,pp631-640

[9] Satyanarayana. A., Intellingent Sampling and Filtering. In Proc of 21st
AAAI conference (AAAI 2006), Doctoral Consortium,Boston, MA

[10] Nuchitprasittichai, Aroonsri, and Selen Cremaschi. "An algorithm to
determine sample sizes for optimization with artificial neural networks."
AIChE Journal (2012).

[11] Dhabak, Dipankar, and Soumya Pandit. "Adaptive sampling algorithm
for ANN-based performance modeling of nano-scale CMOS inverter."
World Acad Sci Eng Technol 80 (2011): 812-818.

[12] Mallows, C. L., and Donald Richter. "Inequalities of Chebyshev type
involving conditional expectations." The Annals of Mathematical
Statistics 40.6 (1969): 1922-1932.

[13] Chernoff, H.: A measure of asymptotic efficiency for tests of a
hypothesis based on the sums of observations. Annals of Mathematical
Statistics 23, 493–507 (1952)

[14] Davidson, I.: An Ensemble Approach for Stable Learners. The National
Conference on A.I. (AAAI), San Jose (2004).

